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Abstract

Seven models for computing underwater radiances and irradianccs by numerical solution

of the radiative transfer equation arc compared. The modc]s arc applied to the solution of several

problems drawn from optical oceanography. The problems include highly absorbing and highly

scattering waters, scattering by molcculcs and by parliculatcs, stratified water, atmospheric

effects, surface wave effects, bottom effects, and Raman scattering. The modc]s provide

consistent output with errors (owing to Monte Carlo statistical fluctuations) in computed

irradianccs being sc]dom larger, and usually sma]lcr, than the cxpcrimcntal errors made in

measuring irradianccs when using current oceanographic instrumentation. Computed radiances

display somewhat

I. Introduction

larger errors,

Various numerical modc]s arc now in usc for computing underwater irradianccs and.t

radiance distributions. These modc]s were designed to address a wide range of oceanographic

problems. The modc]s arc based on various simplifying assumptions, have differing lCVCIS of

sophistication in their rcprcscntation of physical proccsscs, and employ several different

numerical solution techniques.

In spite of the increasingly important roles these numerical models arc playing in optical

oceanography, the modc]s remain incomplcte]y validated in the sense that their outputs have not

been cxtcnsivcly compared with measured values of the quantities they predict. This desirable

mode]-data comparison is not presently possible bccausc the requisite comprchcnsivc oceanic

optical data sets arc not available. Such data sets must contain simultaneous mcasurcmcnts of

the inherent optical properties of the sca water (e.g. the absorption a;d scattering cocfticicnts,

and the scattering phase function), cnvironmcnta] parameters (e.g. the sky radiance distribution

and sca state) and radiomctric quantities (c,g. the comp]ctc radiance distribution, or various

irradianccs). The inherent optical properties and the environmental parameters arc nccdcd as
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input to the numerical models; the radiomctric variables arc the quantities prcdictcd by the

models. Current developments in oceanic optical instrumentation and mcasurcmcnt

methodologies give cause for hope that data sets adequate for comprchcnsivc model-data

comparisons will bccomc available within the next fcw years.

Meanwhile, our faith in these models’ predictions rests upon careful debugging of

computer code, on internal checks such as conservation of energy or known relations between

inherent and apparent optical properties, on simulation of a fcw grossly simplified situations for

which analytical solutions of the radiative transfer equation arc available, and on comparison

(sometimes indirect) with incomplete data sets. An additional worthwhile check on the various

models can bc made by applying them to a common set of realistic problems. Such model-model

comparisons help to identify errors in coding or wcakcnsscs in the mathematical rcprcscntation

of physical phenomena, to quantify numerical errors particular to the various solution algorithms,

to dctcrminc optimum numerical techniques for simulation of particular physical phenomena, andJ

to dctcrminc which models might bc appropriate for inclusion in a future library of underwater

radialivc transfer codes corresponding to those now

modeling (such as LOWIRAN1),

In March 1991, the Oceanic Optics Program

available for atmospheric radiative transfer

of the Office of Naval Research sponsored

a workshop in order to foster a close examination of the various models now in use, and in order

to begin the process of model-model comparison. This paper reports the results of that

comparison. The modc]s being evaluated arc dcscribcd in Sec. 11. During the workshop the

participants defined a set of canonical (standard) problems for usc in model comparisons. These

problems arc documented in Sec. 111. Section IV presents selected results obtained when the

models of Sec. 11 are applied to the problems of Sec. 111.



1 I. Numerical Models

All of the numerical models compared here gcncratc an approximate solution to the tin]c-

indcpcndcnt, monochromatic radiative transfer equation in onc spatial dimension:

Here L(~;p,$) is the unpolarized spectral radiance (at wavelength k, omitted for brevity) at optical

depth z and in direction (p,$), COO is the scattering-to-attenuation ratio, ~ is the scattering phase

function, and S represents any internal source of radiance, The depth z is measured positive

downward from the mean sea surface, and the polar ang]c O = Cos-]p is measured from the nadir

direction. (See Tab. I for a list of symbols, their units and definitions.) In order to solve 13q.

(1) within a water body, it is necessary to specify (1) the inherent optical properties of the water

body, COO and ~, (2) the distribution of internal sources S, (3) the radiance distribution externally

.~incidcnt on the boundaries of the water body, and (4) the physical nature of the boundaries

thcrnsclvcs.

The models differ primarily in the n~athcmatical techniques used to SOIVC Ill. (1) and in

the treatment of boundary conditions at the sca surface. Two of the models described below

(models 11 and DO) employ analytical (invariant imbcdding and discrctc ordinates) techniques

for solving Eq. (1), and five of the models (MC 1 -MC5) employ probabilistic (Monte Carlo)

techniques. Each of the models, as applied to the solution of the canonical problems defined in

Sec. 111, SOIVCS Eq. (1) for a plane-parallel water body that is laterally homogeneous but may bc

inbomogcncous  with depth. The upper boundary of the water body is the wind-blown, random

air-sea interface. The lower boundary is either an intlnitcly thick layer of water below the
.

greatest dcptb of interest, or an opaque reflecting bottom at a finite depth. The models all

assume that externally applied radiance is incident downward on the upper side of the air-water

surfi~cc. The models

as biolumincsccncc).

are all monochromatic and there arc no internal sources of radiance (such

However, some of the models can simulate inelastic scattering processes
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by sequential solutions of Eq. (1). For example, the model is first run at the wavelength of

excitation, k.,, to compute the energy shifted by inelastic scattering from k,x to another

wavelength k, and then the model is run again at k, with the radiance shifted from & appearing

as a source term S at A. A particular example of S used in this treatment of Raman scattering

is given in the Appendix. The models all account for multiple scattering and can usc realistic

scattering phase functions that arc

water.

Several of the modc]s have

highly peaked in forward directions, as is the

additonal capabilities, such as the computation

case for sca

of polarized

radiance in the Stokes vector format and the simulation of azimuthally anisotropic  random air-.

water surfaces. These capabilities arc not evaluated in this paper.

All but onc of the models directionally discrctizcs Eq. (1) by partitioning the set of all

directions, E, into a grid of quadrilateral regions bounded by lines of constant p and constant +,

plus two polar caps (collcctivcly called “quads”). The fundamental quantity computed by these.I
models is the quad-averaged radiance defined by

1L(’t;u,v) = —
JJ

L(z;p,$) dp d($).
Q“,

(2)
(P.+)=  0.,

L(z;u,v) is physically intcrprctcd as the average radiance ov~r the set of directions (p,@) contained

in the Uvti quad, Q, (u labels p bands and v labels $ bands), which subtends a solid angle of size

Q,,. In the model comparison wc chose to usc 24 Q-bands of uniform width A$ = 15°, and 20

p-bands of size Ap = 0.1. However, a polar cap with AjI = 0,1 has a half-angle of O = 25.8°,

which is much larger than onc would normally usc in computing nadir or zenith radiances.

Thcrcforc, some models were run with a slightly different p spacing and smaller polar caps. The

remaining model (DO) computes the radiance L(z;p,$) in particular (p,@) directions.

Wc now briefly dcscribc the distinguishing features of the various models.

Model /1 (Invariant lmbcdding, aulhor C. D. M.) The integral operator of Eq. (2), which

averages any quantity over the set of directions (p,@) ~ QUV, can bc applied to Eq, (1). The result
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is a quad-averaged radiative transfer equation in which L(T;p,$) is rcplaccd by L(z;u,v),

integration over all directions is rcplaccd by summation over all quads, and the phase function

~ (z;p’,~’~p,$) is rcplaccd by a quad-averaged quantity ~ (z;r,s~u,v) that specifics how much

of the radiance initially headed into quad Q,, gets scattcrcd into quad Q.. Using standard

techniques of Fourier analysis and invariant imbcdding theory, the equations for the L(z;u,v) arc

transformed into a set of Riccati differential equations governing the depth dcpcndcnce of certain

rcflcctancc and transmittance functions within the water body. Depth integration of the Riccati

equations (by a high-order Rungc-Kutta algorithm) and incorporation of the boundary conditions

at the sca surface and bottom Icads eventually to the desired L(z;u,v) at all depths. These

mathematical operations arc outlined in Moblcy2 and arc dcscribcd in full in Mobley and

Prciscndorfcrq. The inherent optical properties of the water body can vary arbitrarily with depth,

Absorption and scattering arc built up as sums of terms rcprcscnting  the contributions by pure

water, particles of various types, and dissolved substances..3
This model uscs a Monte-Carlo simulation of the wind-blown sea surface to evaluate

certain quad-averaged, bi-directional rcflcctancc and transmit[ancc  functions that dcscribc how

the sca surface reflects and transmits radiance incident on the surface from above and below.

In this simulation, the sca surface is resolved into a grid of triangular wave facets whose vertex

elevations arc randomly dctcrmincd from any chosen wave slope-wind speed spectrum in a

manner dcscribcd in MobIcy and Prciscndorfcr~ and in Prciscndorfcr and Moblcy4. The surface

simulation allows for multip]c reflections of rays by wave facets and for the possibility of

shadowing of onc facet by another. The probabilistic ray-tracing calculations for setting up the

surface boundary conditions are indcpcndcnt of the analytical computations within the water

body. Moreover, since the ray iracing involves only the surface wave facets, for which it is

assumed that there is no absorption, no rays arc “lost” to absorption. Jt is thcrcforc

computational]y feasible to

fluctuations in the computed

trace a sufficient number of mys to rcducc the Monte Carlo

bi-directional surface functions to a negligible lCVCI.

8



This model docsnot includc anatmosphcreperse.  Thcskyradiancc incidcntonthcsca.

surface is obtained either from an analytic model (e.g. a cardioidal distribution, or the empirical

model of Harrison and Coon~bcs5),  or from the output of a separately run atmospheric radiative.

transfer model . In the simulation of problem 4, below, 1.OW’JI{AN-7  was run to generate the sky

radiance at the center of each of the p-o quads; that value was then taken as the average sky

radiance over the quad.

The bottom boundary can bc either an infinitely thick homogeneous layer of water below

some depth In,W, or an opaque bottom at Zn,.,. in the infinite-depth case, the hi-directional

radiance reflectance properties of the infinite layer below zn,,X arc obtained from an cigcnrnatrix

analysis described in Preiscndorfcrb. The same analysis yields the asymptotic diffuse attenuation

coefficient ka and the asymptotic radiance distribution Lm(p) appropriate for the homogeneous

layer. In the opaque-bottom case, the rcflcctancc properties of the bottom are explicitly spccificd,

for example as a lambcrtian  surface with a given irradiancc rcflcctancc..$

The chief advantage of this model is computational efficiency. Solution of the Riccati

differential equations for L is an analytic process, and thus there arc no Monte Carlo fluctuations

in the computed radiances (cxccpt for a negligible amount introduced by the simulation of the

sca surface). In particular, both upwclling and downwclling radiances are computed with the

same accuracy. Moreover, computation time is a linear function of depth, so that accurate

radiance distributions arc easily obtained at great depths (z > 10). Computation time depends

only mildly on quantities such as the scattering-to-attenuation ratio, surface boundary conditions,

and water stratification. The associated computer code is available and is documented in

Moblcy7.

Model L@ (Discrctc Ordinates, authors Z.J. and K. S.) This model solves F~. (1) directly”

without applying the quad-averaging implied by Eq. (2). The radiance is expanded into a Fourier

cosine series, L(z,p,$) = ~fl~ L“’(Z,P)COS($–$O),  and the phase function into a series of 2N

Lcgcndrc polynomials,



2N-1
fkz;p’,$’+p,$)  = jw;cosy)  =  ~ (21 + 1) g’,(d I’,(cmy) ,

/=0

where gl(z) is the expansion cocfticicnt and v is the scattering angle. The advantage of these

expansions is that the azimuthal dcpcndcncc is isolated in the sense that 2N indcpcndcnt

equations for the Fourier coefficients L“’(~,p)  arc obtained:

I
~ dL “(z,p)

J
= - L “’(z,p) + WO(T) L “’(q.l’)pyT;p’,p)  dp’ + s “’(z,p) ,

A -1

where

Here P?(p) is the associated Lcgengrc polynomial,

The atmosphere and the ocean arc divided into a suitable number of layers to adequately
.<
resolve the optical properties of each of the two media. Each layer is taken to bc homogeneous,

but the optical properties arc allowed to vary from layer to layer, (For a homogeneous medium,

only onc layer is required.) At the intcrfacc bctwccn the ocean and the atmosphere (assumed to

bc flat), Frcsncl’s formula is used to compute the appropriate reflection and transmission

cocfficicnts,  and Snell’s law is applied to account for the refraction taking place there.

The integral term in each of these azimuth-indcpcndcnt  equations is then approximated

by a Gaussian quadrature sum using 2NI terms (“streams”) in the atmosphere and 2NZ terms in

the ocean, so that there arc 2NI streams in the refractive region of ocean

directly with the atmosphere, and 2N2 - 2N1 slrcams in the total reflection

In this way the- intcgro-differential equation is transformed into a systcm

that “communicate”

region of the ocean,

of coupled ordinary

differential equations that is solved by the discrctc ordinate method, as described in rnorc detail

clscwhcrcg, subject to appropriate boundary conditions at the top of the atmosphere and the

bottom of the ocean, The basic discrctc ordinate method used here is dcscribcd and thoroughly
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documented in previous publications9-1]. The modifications required to apply the method to a

systcm consisting of two adjacent media with different indices of refraction arc dcscribcd by Jin

and Stanlncs8.

This method has the following unique features, (i) Bccausc the solution is analytic, the

computational speed is completely indcpcndcnt  of individual layer and total optical thickness,

which may bc taken to bc arbitrarily large. The computational speed is directly proportional to

the number of horizontal layers used to resolve the optical properties in the atmosphere and

ocean. (ii) Accurate irradianccs arc obtained with just a fcw streams, which makes the code

very cfficicnt. (iii) Bccausc the solution is analytic, radiances and irradianccs can bc returned

at arbitrary optical depths unrelated to the computational ICVCIS. (iv) The DO method is

essentially a matrix cigcnvaluc-cigcnvcctor  solution, from which the asymptotic solution is

automatically obtained, The smallest cigcnvaluc  is km, and the associated eigcnvcctor is Lw.

Desirable
.t
scattering effects

blown surface to

and possible extensions of the method include (i) the computation of inelastic

to treat phenomena such as Raman scattering, and (ii) the inclusion of a wind-

simulatc the basic features of sca surface roughness. These extensions would

require some modifications of the existing computer code.

Model MCI (Monte Carlo 1, author H. R. G.) This model simulates radiative transfer in

both the ocean and the atmosphere, as coupled across a wind-roughened intcrfacc. The code is

designed to simulate irradianccs as a function of depth for computation of the irradiancc

rcflcctancc l?~tid and diffuse attenuation functions such as Kd = -d(lnE~)/dz. The nadir-viewing

radiance Lu is also computed as a function of depth for the computation of Q = E#Lu. The

optical properties of the ocean arc continuous] y stratified in the vertical. They can bc spccificd

as discrctc values as a function of depth (with linear interpolation bctwccn th~ given depths) or

dctcrmincd from formulas as in problcm 3, below. Separate scattering phase functions arc used

for the particles and for the water itself. Variants of this code have been used for a number of

studies of radiative transfer in the occan]2-]7.
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The sea surface roughness is modeled using the Cox and Munk18 surface SIOpC

distribution foragivcn  wind spccd. Theeffect ofthcsurface roughness isnotsinlulatcd cxact]y

bccausc the possibility of shadowing of onc facet byanothcr isignorcd. Multiple scattering,

howcvcr, isincludcd: e.g. ifadownward-n~oving  photon inthcatn~osphcrc cncountcrslhc sea

surface and is still moving downward after reflection, it will undergo a second interaction with

the sca surface, Onc important aspect of this model is the proper usc of photon weights to

account for the fact that not all facets arc oriented in such a manner as to bc able to interact with

an incident photon, i.e. facets with normals making an angle ICSS than 90° to the direction of the

incident photon.

Cox and Munk,

rcspcctivcly, arc

J

or

The sequence of events during an interaction”with the surface follows.

the probability that the x and y components of the surface slope, z,

within z, t 1/2dzx and Zy A 1/2dzy is

From

and ZY

1

[1

2.2 + z;
p(z,,zy) (izA dzy = — Cxp - dzx dzy ,

7ccr2 0’

where

62 = 0.003 + 0.00512 u .

Here U is the wind speed in m s“], $. is the angle bctwccn the normal to the facet and the normal

to the lCVC1 surface, and Cl,, is the azimuth of the normal. Given random numbers pe and p$ on“ “
the unit interval (0,1 ), the model finds 6,, and $,1 from

. e,, = 27rpe”

1 ‘“ tan2@~’
P$” =

J-[ 1— Cxp - tam)fl’ scc2~~1 64$,,’.
2n2CJ2 ~ CJ2

The photon interacting with Ihc surface is given the weight
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w =
Cos(o sccon

p(zx,zy)  Coso Scc$n dzx dzy ‘
where o is the angle of incidcncc on the chosen facet. The weight W accounls for sampling from

p(zx,zY) even though all facets arc

The atmospheric parl of

molecular and aerosol scattering.

Eltcrnlan]9. The aerosol phase

not visible to the photon.

the mode] consists of fifty, one-kilometer layers with both

The vertical distribution of the optical properties is taken from

function at the given wavelength is dctcrmincd from Mic

thcory20 using Dcirmcndjian’s Haze C size distribution21

dn(r) ~ 1
dr ~’

where r is the particle radius, h(r) is the number of particles pcr unit volume with radius

bctwccn r and r + dr; v = 3 is used in the computations. The aerosol total scattering coefficient

at each altitude is proportional to L-P, where P = v - 2; however P = 0.75 fits Eltcrmans’s data,$
better. When a photon interacts with the atmosphere, the scattering angle is chosen from either

the molecular or aerosol phase functions based on the ratio of their scattering coefficients for the

layer in which the interaction takes place.

When inelastic proccsscs arc to bc included, the above code is operated at the excitation

wavelength X.X to dctcrminc the excitation radiance distribution, This is used as input to a second

Monte Carlo code that computes the light field at the wavelength of intcrcst]7. As with the

elastically scattcrcd radiation, the goal is to dctcrminc the irradianccs of the inelastically scattcrcd

radiation, This is a considerable simplification bccausc the solution can bc effected by working

with the azimuthally averaged radiance at L, i.e. only the az,imuthally averaged radiative transfer

equation need bc solved. The details of this formulation arc jivcn in the Appendix.

Model MC2 (Monte Carlo 2, author G. W. K,) This model also simulates a coup]cd occan-

atmospherc  systcm. The Monte Carlo code relics hcavi]y on several variance reducing schcmcs

to incrcasc computational cfficicncy, Wc give only a brief description of onc of the most useful
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ones. The use of statistical weights allows us to treat each photon history as a packet  of photons

rather than as a single photon. Photons arc never allowed to cscapc fronl the ocean-almosphcrc

systcrn. The method of forced collisions is used, whereby wc sample from a biased distribution

that ensures a collision along the path, and the weight is then adjusted appropriately to unbias

the result, The way this is done is as follows. Suppose onc wants to cornputc the expectation

value ~ of some function ~ of a random variable x, using a probability density function p(x).

By definition,

(f) = J--x) p(x) dx .

However, if we want to sample from the density function ~(x) then

(f) = Jflx) X2 P(x) dx = Jflx) w(x) ]j(x) A,
]>(x)

where w(x) = p(x)/~(x) is called the statistical weight. The variance CJ2 of flx)w(x) when

sampling from the biased distribution is given by.i

CP[f(x) w(x)] = Jkx) w(x) - (f)~lxx) (ix.

Although this method appears straightforward, it dots have pitfalls. If the weight can have

values that exceed unity, then one can have a variance that far cxcceds the variance in the

unbiased sampling. Therefore, extreme caution must bc used when using this method. It should

be noted that this is a very powerful method for studying perturbation effects, bccausc several

proccsscs can bc simultaneously emulated with the same set of photon histories.

Now consider the tcchniquc of forced collisions, in which photons arc never allowed to

cscapc the medium. Let ~ denote the optical path length to a boundary. To insure that the

photon never cscapcs, wc sample the path length according to the probability density function

e “ dzp(~) A = ()<~<~b.
1 _e -%’

The weight now has to bc multiplied by [1 - cxp(-~)] to remove the bias. It should bc noticed

that this factor is always lCSS than unity and should produce a smaller variance than when using
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unforced sampling. Histories arc terminated only when the statistical weight falls below some

spccificd value.

When an interaction occurs, the packet weight is multiplied by the single scattering albcdo

WO, which gives the fraction of photons that can continue to scatter. The lCVCI air-water interface

is modeled by using the appropriate Frcsncl reflection and transmission coefficients. A random

number is chosen at this stage to dctcrminc whether the photon is transmitted or reflcctcd.

Radiances are obtained over detectors that have finite solid angles. However, statistical

estimation can bc used to give true continuum radiance values where no directional averaging

is done. This model can simulate inelastic scattering; the details arc given in Kattawar and

XU
22, The Monte Carlo method has also been cxtcndcd to include the full Stokes vector

treatment of polarization2J-2G; these papers show that substantial errors can occur if polarization

is ncglectcd.

Model MC.? (Monte Carlo 3, authors A.M. and B. G.) This Monte Carlo model is similar3

to those dcscribcd in Plass and Kattawa?7’28 and in Gordon and 13rown29. It is designed to

simulate the radiance distribution at any level in the atmosphere and in the ocean. Bctwccn these

two media, a wind-roughened interface is modeled using the isotropic Gaussian distribution of

sca surface slopes, as discussed under model MC1. The probability of occurrence of the various

slopes is modified when considering nonvertically incident photons. This photon-facet interaction

is modeled as in Plass, et al.30; it does not account for the possible occultation of a facet by an

adjacent one. Transmitted and rcflcctcd photon packets rcsulti ng from interaction with the air-

watcr surface arc weighted according to Frcsncl’s law (including the possibility of total internal

reflection), According to the problem under investigation, photon packets arc introduced at the

top of the atmosphere, or just above (or bcjow) the ocean surface. F~or specific problems

involving deep levels, packets can be rc-introduced at intermediate depths inside the water body,

according to a directional distribution that reproduces the downward radiance field as resulting

from a previous Monte Carlo run, The bottom boundary is either an infinitely thick absorbing

15



layer, in which photons arc lost from the systcm, or a lambcrtian reflecting bottom of a given

albcdo, from which weighted photon packe~ are reflected.

After each collision, the weight of each photon packet is multiplied by the local value of

COO pertinent to the altitude or the depth, to account for its partial absorption. A packet history

is terminated when its weight falls below a prcdctcrmincd  value, typically 1 xl 0-6. For each

collision a random number on the unit interval is compared to the local value of the ratio of the.

molecular scattering coefficient to the total scattering coefficient, to determine if the scattering,

event will be of molecular type (air or water molecules), or due to an aerosol or hydrosol

particle, The appropriate phase function is then used to determine the scattering angle; the

orientation of the scattering plane is chosen at random on the interval (0,2z). The number of

photons initiated depends on the single-scattering albcdo value, so as to control the stochastic

noise in the computed radiomctric quantities (details can be found in Morel and Gcntili31’32).

., The model is operated for its oceanic segment with the optical properties as specified in Sec. 11 I.

For the atmospheric segment, fifty 1-km thick layers arc considered, with spccificd values for

Raylcigh and aerosol scattering and for ozone absorption as in 131tcrman19. The aerosol phase

function (as computed by Mic scattering theory) for the maritime aerosol model defined by the

Radiation Commission of IAMAP is used; see the models of Tanr6, et al.33 and Baker and

Frouin%,

Model MC4 (Monte Carlo 4, author P.R.) This model is intended primarily for simulation

of the radiance distribution above and just below the surface, and for simulation of irradianccs

with the first five mean free paths of the surface. The model is based on techniques described

by Kirk3S. The model atmosphere is composed of fifty layers, each characterized by separate

Raylcigh  and particulate scattering coefficients and an albcdo of single scattering, as given by

Eltcrn~an]g. Weighted photon beams arc projected into the atmosphere from the atmosphere-space

boundary, and a collision is forced somewhere in the atmosphere along this original trajectory.

The attenuated beam, which is the weight of the original beam less the portion lost to scattering
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and absorption, strikes the sca surface at the angle of the original trajectory. Beam 10SSCS duc

to absorption and scattering take place at the point of collision. There the absorbed portion is

lost and the scattered portion exits the collision point in another single, weighted beam. A

random number is’ compared to the ratio of the Raylcigh scattering cross section to the total

scattering cross section to dctcrminc the type of volume scattering function governing the

scattering event. In the case of an aerosol scattering, a two-term Hcnycy-Grecnstcin  phase

function is used to dctcrminc the scattering anglc3b. Otherwise, the angle is dctcrmincd by a

Raylcigh phase function37. Once the trajectory of the scattcrcd portion of the beam is

calculated, the distance from the point of collision to the next cncountcrcd  intcrfacc (air-water

or air-space) is determined. A ncw collision is forced sorncwhcrc along this trajectory, and the

process is rcpcatcd until the weight of the scattcrcd portion of the beam falls below a preset

weight for the simulations prcscntcd below.

scattcrcd tmjcctories cncountcr the atmosphere-space boundary and are

impinge on the sca surface. For the latter, the angle of incidence depends

minimum fraction of the original beam weight. This minimum traceable weight is set to 1x10-6

of the original beam.t
Some of the

forgotten; the others

on the nadir angle of the ray and slope of the sca surface. The directions of the reftcctcd and

rcfractcd rays arc determined geometrically, and the weights of the rays are calculated from the

Frcsncl formula. Although wave shadowing is ncglcctcd, mu]tiplc surface interactions may occur.

A rcflectcd ray that is still projcctcd downward, or a transmitted ray projected upward, must

cncountcr the sca surface again immcdiatc]y, without an intervening trajectory. Ray trajectories

resulting from reflection are followed in the original manner. Transrnittcd portions of the beams

are followed similarly until encountering the bottom or the sca surface, or until being diminished

to ICSS than the minimm{ Iraccablc weight, Those beams striking the bottom arc lost; those

incident upon the sca surface from below arc again subjcctcd to the reflection and transmission

calculations,
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Model h4C5 (Monte Carlo 5, author R. H. S.) The Naval Research Laboratory (NRL)

optical model (referred to as the NC)RDA or NOARL optical model in earlier publications) uscs

standard Monte Carlo tcchniqucs13’28’35. At each scattering event, a random nurnbcr is used to

dctcrminc if the scattering is duc to molecular water, quartzlikc particulatcs, algae, or organic

detritus; the volume scattering functions of these components arc treated separately, rather than

using an average volume scattering function. The model includes the effects of Raman

scatlcring, If a photon collision results in inelastic scattering (as dctcrmincd by comparing a

random number to the appropriate optical propcrlics of the medium), the wavelength is shifted

by an amount corresponding to the mean wavcnumbcr shift of 3357 cm-l corresponding to Raman

scatter by water mo]eculcs,  The finite bandwidth of the Raman-shifted light is taken into account

by averaging over 10 rim-bandwidths (roughly corresponding to current oceanographic

instruments); details of this averaging arc dcscribcd in Stavn and Wcidcmann38’3g. For the

simulation of problcm 7, below, it was assumed that the Raman scattering occurs in a very.4
narrow wavcband, The photons arc tallied into zonal bands, as is convenient for computation

of irradianccs  and the nadir-viewing radiance.

There is no atmosphere per se implcmcntcd in the model. Atmospheric transmittances

of solar irradiancc needed for simulations arc obtained from the non-layered atmospheric model

of J3rinc and Iqba140. The mode] dctcrmincs the skylight radiance pattern from the empirical

mode] of Harrison and CoombcsS. The present version of the code handles only homogeneous

waters.

111. Canonical Problems
.

Wc now define several canonical, or standard, problems for solution by undc~atcr

radiative transfer models. Models claiming to provide realistic simulations of the oceanic optical

environment should bc able to solve these problems, and provide output that is at least as
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accurate as the data obtainable by presently available instrumentation. In brief, these problems

arc

Problcm 1:

Problcm 2:

Problem 3:

Problcm 4:

Problcm 5:

Problem 6:

Problcm 7:

An unrcalistical]y simp]c problcm

A base problem  using realistic inherent optical properties for the .sca water

The base problcm, but with stratified water

The base problcm, but with atmospheric effects

The base problcm, but with a wind-blown sca surface

The base problcm, but with a finite-depth bottom

A problcm involving Raman scattering.

In each of these problems, the water body is taken to bc horip,ontally homogeneous. The

real index of refraction of the water is n = 1.340. The depth below the surface can bc spccificd

by either the nondimensional optical depth z or by the geometric depth z in meters. The base

problcm 2 assumes that (1) the air-water surface is flat, (2) the water is homogeneous and.t
infinitely deep, (3) there is no atmosphere, i.e. the sky is black, (4) the sun is a point light source

Iocatcd at a zenith angle of O,Un = 60°, (5) the sun provides a spectral irradiance just above the

sca surface of magnitude El = 1 W m-2 rim-] on a surface perpendicular to the sun’s rays (which

gives Ed = 0.5 W m-z rim-l for (3,U = 600), (6) there is no inelastic scattering or other sources of

light within the water body, (7) the angular scattering properties of the water arc characteristic

of natural hydrosols, and (8) the water is either highly scattering (COO = 0.9) or highly absorbing

(00 = 0.2). The other problems arc defined by exceptions to these assumptions. The specific

problcm definitions arc as follows.

Problem 1. A Raylcigh phase function
.

B.j(P’>o’+P@ = P“(v)  =  &(1

is used to dcscribc the angular scattering properties of the

+ cos2yf) (3)

water. The scattering angle ~ is

related to the incident (p’,$’) and scattered (p,@) directions by
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yf = ,0s-,[,,, + /-cm7cos@-,9]

This phase function, which is plotled in Fig. 1(b) below, is similar to that of pure sea water. The

Raylcigh  phase function is a WC1l behaved function of the scattering angle v and presents no

numerical difficulties in its treatment; wc therefore consider this an “easy” problem for numerical

m.dcling.  Note that ~ ~ satisfies the norma]iz,ation

(4)

Both highly scattering (00 = 0.9) and highly absorbing (ccO = 0.2) cases arc considered for the

Raylcigh phase function.

Prob/em 2. This “base” problem uscs a phase function that is typical of oceanic waters.

The total volume scattering function (VSF) ~ is
.! P= bw)+bpj

where subscripts w and p refer to pure sca water and to particles, respectively. The total phase

function ~ therefore can bc expressed as

This total ~ must

norma]imd.

The particle

San Diego Harbor.

B=#i+
satisfy the normalization (4),

phase function ~ ~ is defined

The VSF for pure sca watcr42

; B,, . (5)

which is the case if ~ ~ and ~ ~ arc each

from three VSF’S measured by Petzold41 in

was first subtracted to find the three particle

VSF’S. Then the scattering coefficient of pure sca water43 (bw, = 0,00231 m-l at L = 530 nm,
.

the wavelength of Petzold’s data) was subtracted from the rcspcctivc scattering coefficients

computed by Pctzold (b = 1.205, 1.536, and 1.824 m-l for the three VSFS) to find the particle

scattering coefficient bp for each VSF. The three

using these bp’s, and the mean value of the three

20

par[icle phase functions were then computed

~P’s was computed at each scattering angle,



.

This rncan ~P(@ bccomcs infinite at v = O, if it is assumed that ~ ~(~) - V-n’ as v a 0, where

m = 1.346 is the negative of the slope of log ~ P(v) vs. log v at the two smallest tabulated

scattering angles (~ = 0.10° and O. 125890). When this functional form of ~P was used to

analytically integrate 27c ~P(~)sinyr from yr = O to yr = 0.10°, and the trapezoidal rule was used

to integrate from ~ = 0.12589° to v = 180°, Ihc normalization integral (4) gave the value

1.006449. Wc thus divided ihc rncan ~P by 1.006449 to obtain the values shown in Tab. II. The.

particle phase function ~P(yr) is then defined to bc the tabulated values, with linear interpolation

to bc used bctwccn the tabulated values, and with ~P(yr) s ~P(O. 12589°)(0. 12589°/v)l~c for qr

< 0.12589°, The resulting ~P(v) is defined for all ~ and exactly satisfies the normalization

condition (4). This ~ ~ is plotted in Fig. 1(b), below.

Moreover, since h., = 0.00231 m-l is much less than bP (> 1.2 m-l for each of the Pctz,old

VSF’S), it is reasonable to neglect the contribution of the water, ~ ~, to the total phase function

of Eq (5). This omission crcatcs an error of at most a fcw pcrccnt in ~ even at backscattercd>
directions (yr > 900). Wc thcrcforc define the total phase function for problcrn 2 to bc just the

particle phase function as defined above: F(v) = p,(v).  This P iS reprcscntativc Of phase

functions measured in ocean waters with typical particle concentrations and, because of its highly

peaked behavior at small yr, can bc cxpcctcd to

realistic phase functions. Both highly scattering

this phase function.

test

and

the numerical models’ abilities to handle

highly absorbing cases arc considered for

Problem 3. This problcm is designed to test the modc]s’ abilities to compute light fields

in highly stratified water. The water stratification is spccificd as follows. The particulate

absorption and scattering coefficients arc taken to bc

up = 0.04 c 0“@2 (6a)

and
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bp = 0.33 c 0’620, (6b)

rcspcclivcly, where C is the chlorophyll (pigmcnl) conccntmtion. When C is in mg nl-3, al, and

b,, arc in m-l. The absorption rcprcscntation (6a) is based on Pricur and Sathycndranath44 at a

wavelength of k = 500 nm, The scattering rcprcscntation (6b) is based on Gordon and Morc14s

with k = 500 nm and assuming that bP(k) - k-]. The pigment profile with depth is based on

Lewis, et al.46 and consists of a gaussian plus a constant background:

[[11
2

c(z) =Co+  h ] z -z”,ax—Cxp -T —.
rs 2n s

Platt and Sathycndranath47 show that Eq. (7a) with the parameter values

(7a)

CO = 0.2 mg nl-3 (7b)

s=9nl (7C)

q,, = 17 m (7d)
.1

h = 144 mg n~-2 (7C)

fits data from the Celtic Sea in May very WCII. Wc thcrcforc adopt Eq. (7) as a reasonable

model for C(z). When Eq. (7) is used in Eq. (6), the particulate absorption and scattering

cocfficicnts, and hence all inherent optical properties, bccomc functions of depth. The absorption

and scattering coefficients for pure sca water at k = 500 nm arc given by43

aW, = 0,0257 m-l (8a)

and

When the chlorophyll

b., = 0.0029111-’. (8b)

concentration is low, scattering by pure sca water makes a

significant contribution to the total scattering at large s~attcring angles (almost 1A when C = CO

and ~ = 1800). Therefore, for this problcm it is ncccssary to usc Eq. (5) to dctcrminc the total

phase function from the phase functions for pure sca water, ~ ~, and for parlicles, ~ ~, as were
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defined in problems 1 and 2. The phase function is now a function of depth, as is the scattcring-

to-attenuation ratio

~w + bp(z)coo-l=
c Uw + U1,(Z) + bW + b$z) “

Figure 1(a) shows a, b, c and 6.)0 as functions of depth for problem 3, and Fig. 1(b) shows the

phase functions at selected depths.

Problem 4. This problcm is the same as problcm 2 with coO = 0.9, except that atmospheric

effects are included. The sky is no longer black, but rather has a radiance distribution that

dcscribcs the atmosphere’s scattering and absorption effects on sunlight, The incident solar

irradiancc, El = 1 W nl-2 rim-], is now applied at the top of the atmosphere. The atmospheric

optical effects arc defined by Eltcrn~an’s19 aerosol and Raylcigh scattering optical thicknesses at

L = 500 nm:

‘T ..,.,O1 = 0.264
.{

‘kyleigh = 0.145.

Since the numerical models incorporate atmospheric effects in various ways, a more detailed

specification of the atmosphere is not made.

Problem 5. This problem is the same as problem 2 with 6)0 = 0.9, except that the effects

of a wind-blown sca surface arc included. The surface waves arc statistically specified as having

a wave slope standard deviation of a = 0.2 in the Cox-Munk]8 capillary wave spectrum

02 = 0.003 + 0.00512 U ;

where U is the wind speed in rnctcrs pcr second. Thus o = 0.2 corresponds to a wind speed of

U = 7.23 m S-l. The solar zenith angle is taken to bc 0,,,, = 80°.

Problem 6. This problcm is the same as problem 2, cxccpt that a finite-depth bottom is

imposed. The bottom is taken to bc an opaque, lambcrlian reflecting surface at depth ~ = 5.

This surface has an irradiancc rcflcctancc (E~E~) of 0.5. Such a surface is a reasonable model

of a light colored, sandy bottom.
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Problem  7, This problcm is for usc in comparing models that include the effects of

Raman scattering by water mo]cculcs. The wavelength of excitation is taken to bc k.X = 417 nm,

and all light that is Raman scattcrcd at 417 nm is assumed to shift to k = 486 nm. The Raylcigh

phase function, Eq. (3), is used for elastic scattering. The phase function for Raman scattering

is”

k“,(w)  =

where p is the dcpolarir,ation ratio.

scattering coefficient b~,n, equal the

[ )~ l+3p1+l-pcos2~, (9)
El+2p l+sp

For this problcm, wc usc p = 0.17 and take the total Raman

elastic scattering coefficient of the water itself, i.e. I&,n, = bW.

The absorption and elastic scattering coefficients of pure sca water at the wavelengths in question

as taken from Smith and Bakcr43 are

UW(417) = 0.0156 m ‘]
.L

bW(417) = 0.0063 n~ “
aW,(486) = 0.0188 IH ‘*
bW,(486)  = 0.0032 }~~ ‘1 .

Considering the way in which Smith and Baker inferred aW from irradiance data, it is assumed

that b~,n, is already included in the value of a.,. Thus the total beam attenuation coefficient at

each wavelength is just aW, + b.,. A unit irradiance El is incident at the sca surface on a plane

normal to the solar beam at the excitation wavelength k., =41 7 nm. There is no atmosphere and

no solar irradiance is incident on the sca surface at L = 486. The resulting irradianccs at 486 nm

arc those that would bc duc solely to inelastic scattering from 417 nm. The solar zenith angle

is 60° and the air-water surface is flat,
.

Table III summarizes the various canonical problems,
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IV. Model Comparisons

Although the models generally compute the radiance L, the quantities most often used in

oceanic optics arc various irradianccs. These irradianccs arc defined by weighted integrations

of the radiance distribution over the upward and downward hcmisphcrcs of directions, as shown

in Tab. 1, and are easily obtained from computed radiances. The nadir-viewing radiance L. is

the radiance seen by a sensor pointed straight down (in the nadir direction); LU is important in

rcmolc sensing studies. The ability of a numerical model to accurately compute the irradiances

and nadir radiance is a measure of its utility for many oceanographic studies.

Models 11 and DO compute all quantities with equal accuracy. However, the Monte Carlo

models MCI -MC5 compute upwclling quantities (e.g. EU, EOU, or LU) with less accuracy than

downwclling quantities (c,g. Ed or EO~). This is bccausc most of the simulated photons, all of

which are initially heading downward, continue to head downward and thereby contribute to Ed

.tor Eod. However, only the relatively fcw photons that arc scattered into upward directions can

contribute to Eu, EOU, or LU; fewer photons means greater statistical fluctuations in the computed

values.

Also, for a given initial number of photons, the Monte Carlo models must settle for lCSS

accuracy at a given optical depth ~ in highly absorbing waters (small COO) than in highly scattering

waters (large OJO). This is because photons absorbed before they reach depth ‘t are not available

to bc tallied in the computation of the radiance or irradiancc, whereas scattered photons can

eventually reach depth t and bc tallied. In practice, the accuracy of the Monte Carlo models

is strongly dcpcndcnt on the number of photon collisions; thus more photons must bc processed

when 00 is small, in order to achicvc satisfactory accuracy. The accuracy of models 11 and DO

is indc~cndcnt of COO.

With the above comments in mind, wc sclcctcd Ed, EOU and LU for comparison just above

the sca surface and at ~ = 1, 5 and 10. Problems 1 and 2 have both highly scattering (COO = 0.9)

and highly absorbing (00 = 0,2) waters,
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Although it is not possible to compare the computational cfficicncics of the various

models bccausc they were run on a variety of computers, with differing numbers of photons

traced in the Monte Carlo codes, Tab. IV shows some rcprc.scntativc execution times. It should

bc noted that the long execution times shown for some of the Monte Carlo codes arc the times

required for accurate radiance simulations at large depths. If only irradianccs or near-surface

radiances arc required for a particular study, these models can be run for much shorter times.

For example, in the simulation of problem 3, output from model MCI was compared for run

times of 180 s and 7200 s, The Ed values throughout the cuphotic zone (roughly the upper 21

m), as accumulated after 180 s, were within 1.570 of the values obtained after 7200 s. After 180

s, the EOU and LU values just below the surface (at z = O) were within 1 % of their final values.

Dccpcr within the cuphotic zone, EOU and LU differed by as much as 8% and 20%, rcspcctivcly,

for the two run times. At a depth of z =60 m, the diffcrcnccs in the computed quantities for the

two times were 3% for Ed, 19% for EOU, and a factor of six for Lti. Model DO is much more.t

efficient for irradiance than for radiance computations, because only the azimuthal]y averaged

equation (i.e. the n? = O component of the radiance) is required to compute irradiances or

azimutha]ly averaged radiances. Full radiance computations require the evaluation of additional

aT,imuthal components, Strongly anisotropic scattering also requires a large number of streams.

We now briefly discuss the results of the models’ simulations of problems 1-7.

Probletn 1. Figure 2(a) shows the computed Ed, EOU and LU for the Rayleigh phaso

function of problcm 1 and WO = 0.9. In this and subsequent figures, we plot the results from the

two analytic modc]s, U and DO, with solid lines; the Monte Carlo results arc plotted with dashed

lines. This makes it easy to scc that, in most instances, the Monte Carlo results arc distributed

to either side of

We first

.
the analytic results, which arc usually indistinguishable in the figures.

note in Fig. 2(a) that all models predict nearly the same values for a given

quantity, although there is

This behavior is expcctcd,

a dctcctablc spread in I.ti values owing to Monte Carlo fluctuations.

based on the prccccding discussion, However, we also note that all
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models predict nearly the same values for Ed and EOU, which is counter to intuition based on

oceanographic cxpcricncc. This result is easily explained if we recall that the Raylcigh phase

function is nearly isotropic (independent of the scattering angle) and that the medium is highly

scattering. Because of the intense scattering, the incident collimated radiance distribution

approaches its asymptotic form very quickly with depth. Prciscndorfe#9 shows that for an

isotropic phase function the asymptotic radiance distribution L- has an elliptical shape:

IJO
L-(O) = (lo)

1 + kmcc)s(l  “

Here LO depends only on the inherent optical properties, and km is the eccentricity of the ellipse;

ke is numerically equal to the nondimensional asymptotic diffuse attenuation coefficient. The

analytic forms of L- for a Raylcigh phase function and a Raylcigh phase matrix are also

known50 For co = 0.9 the Raylcigh  La is very, C1OSC to elliptical, and so wc can use the simpler0

form of F~. (1 O) for the following argument. The Ed and EOU corresponding to L- of Eq. (1 O)
.1
arc

E~=- ~[k~ + ln(l - km)]
k:

21rL
EOU = ~ln(l + kti).

(11)

Now the value of km for the problem at hand turns out to be km = 0.52 (see Tab. VII, below).

This value is coincidentally very near to the value km = 0.531, which makes Ed = EOU in Eq. (11),

thus explaining the numerical results seen in Fig. 2(a). This peculiar behavior of Ed and EOU

depends both on the phase function and on the scattering-to-attenuation ratio. Such behavior is

not seen in the output for the other problems, nor would it ever be encountered in a natural water

body.

Note also that both Ed and EOU arc greater just below the water surface than just above it,

which may also seem countcrintuitivc. However, this is just the phenomenon of “optical energy

trapping” in highly scattering waters, as discussed by Stavn, et al.51 and by Plass, et al.52. In
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the present case of a solar angle of 60°, more than 93% of the incident solar irradiancc is

transmitted through the level surface into the water. About one half of the highly diffuse

upwclling irradiancc just below the surface is reflected back down by the surface. The total Ed

just below the surface is the sum of the transmitted solar contribution and the rcflcctcd upwclling

contribution; this sum is greater than Ed(air). Likewise, EOti(air) consists of the (relatively weak)

specularly rcflcctcd solar beam plus diffuse light transmitted upward through the water surface;

this sum is less than EOU just below the surface,

Figure 2(b) shows the output for the Raylcigh phase function and a highly absorbing

medium with 0)0 = 0.2. Now EOU is an order of magnitude less than Ed. There is almost a factor-

of-three spread in the Monte Carlo estimates of EOU at z = 10, and three of the Monte Carlo

models had too few photons left at z = 10 to provide an estimate of LU at that depth. This

behavior is cxpcctcd for this highly absorbing case.

Table V displays the average (over all modc]s) values of Ed, Eou and LU at sclcctcd depths.s

for this and the remaining problems. These data arc provided for readers who wish to compare

their own models with ours. Such comparisons should bc especially worthwhile for simple

paramctcrizcd models that attempt to compute irradianccs without solving the complete radiative

transfer equation. The table also displays the ratio of the sample standard deviation s to the

samp]c mean i,

s =—-
X

J
.

where xi is the result predicted by the i’h model for. the quantity of interest, and N is the number

of model predictions (N = 7 for most quantities). The ratio s\~ is a quantitative measure of how

close together the models’ predictions arc for a given cluantity. Inspection of this ratio for

problem 1 shows that the model predictions arc usually closer together for the highly scattering
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case ((00 = 0.9) than for the highly absorbing case (COO = 0.2), closer together at shallow depths,

and closest together for Ed The greatest spread in values is for L. at large depths, owing to the

small number of photons available for its estimation by the Monte Carlo models.

Problem 2. Figure 3 shows the models’ output for problcm 2. Figure 3(a) is for the

highly scattering case of COO = 0.9. Each of the seven modck provides essentially the same

values for Ed and for EOU to 10 optical depths (and dccpcr); some Monte Carlo fluctuation is

Figure 3(b) shows the same computations for the highly absorbingapparent in the Lu values.

case of 00 = 0.2. Once again, all models give nearly the same values for Ed and for EOU to 10

optical depths. Now, however, considerable Monte Carlo fluctuation in the LU values is seen at

even shallow depths; only modc]s II, DO and MC3 were able to compute L. below t = 10.

Wc emphasize that the large fluctuations seen in some of the estimates in Fig. 3(b) are

simply the result of tracing an insufficient number of photons in the simulations, and not of any

inadequacies in the modc]s thcmsc]vcs. Tracing additional photons, at a proportional increase.1

in computational expense, can rcducc these fluctuations to any desired level. The particular

values seen in Fig. 3 arc each the result of one simulation. Running the Monte Carlo models

with different seeds for their random number generators would generate a noticeably different

set of curves for those instances where large fluctuations arc seen in Fig. 3. It should be noted

that there arc certain sampling schemes that can improve the statistics at greater depths.

However, this improvement is usually at the expense of larger errors in the radiometric quantities

at smal]cr depths.

The cuphotic z,onc is the region of a water body where there is sufficient light for

photosynthesis to take place. Jn normal daylight conditions, it extends from the surface to a

depth where the irradiancc is roughly onc percent of its surface values, Wc sec in Fig. 3(b) that

Ed and EOU have decreased by two orders of magnitude at about four optical depths. Each of the

models produces nearly identical irradiances to depths greater than z = 4, so that each of the

models is perfectly adequate for the purposes of biological oceanography. Likewise, the models
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produce very nearly the same water-leaving radiances, LU(air), as would be of interest in remote

sensing studies.

Problem 3. Figure 4 shows the models’ output for problem 3, the stratified water case.

The one-percent irradiancc level is now at about z = 21 m. Once again, the models provide

nearly identical output to depths far below the cuphotic zone.

Problem 4. Figure 5 shows Ed values near the water surface for the simulation of problem

4, the case with an atmosphere. The different ways in which the models simulate the atmosphere

lead to an 1896 spread in the values of Ed just above the water surface, This difference in Ed(air)

values is then carried throughout the underwater computations. The s/~ ratio displayed in Tab.

V is uniformly large for this problem because of the systematic offset of the different models’

predictions. Note that apparent optical properties, such as rcflcctanccs and diffuse attenuation

functions, arc not affected by this offset, because the apparent properties arc defined as ratios of

.Iradiometric quantities. For example, the s/~ ratio for the Kd values computed from the plotted

Ed values at depths z = O and 1 m is 0.009, which is much smaller than the s/~ = 0.076 value

tabulated for Ed at ~ = O.

Problen; 5. Four of the models (II, MCI, MC3 and MC4) are capable of simulating a

wind-blown air-water surface as defined in problem 5. Figure 6 shows output from these models

for a solar zenith angle of O,un = 80°. The models arc nearly identical in their output, even in

this case of nearly horoz,ontal incidence, for which any differences in the models should be most

noticeable. Note that EOU(air) is greater than Ed(air). This is because EOU(air) contains a large

contribution by the specularly reflected solar beam: simulations by Prciscndorfcr and Moblcy4

show that the reflectance of a capillary-wave surface is greater than 0.22 for a wind speed of 7.23

m S-l and 0,,1, = 80°. The solar hcam contribution to Ed is weighted by a Cos(l,un factor, which

is small for (l,Un = 80°.

Problem 6. Models II, DO, and MC3 can simulate a finite-depth bottom. Figure 7 shows

the output from both models for the case of mO = 0.2; the models arc clearly in excellent
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agrccmcnt. It is easy to show that EOU = Ed for a lambcrlian surface of rcflcctancc 0.5, and all

three models show this cxpcctcd result at depth t = 5.

Problem 7. Four of the models (MCI, MC2, MC3 and MC5) can simulate Raman

scattering. Table VI compares the inelastically scattcrcd contributions to the downwclling and

upwclling plane irradianccs, Ed and Eu rcspcctivcly,  for the simulation defined in problcm 7. The

models are clearly in cxccllcnt agrccmcnt, even though their respective formulations of inelastic

scatter are somewhat di ffcrcnt,

Comptdation  of radiance  disfrib~fions. Five of the models (II, DO, MC2, MC3 and MC4)

compute the full radiance distribution, rather than just tallying photons as ncccssary to compute

the irradianccs and LU. Figure 8 illustrates the consistency with which the various models

compute the radiance distribution. The figure shows L(~,(3,Q) in the plane of the sun at depths

of z = O, 5 and 20 for problcm 2, COO = 0.9. Direction ((lv,$v) gives the viewing direction, i.e. the.

., direction an instrument points in order to detect photons traveling in the ((l = 180° – 0,, $ = 180°

+ $,) direction. Thus 0, = O corresponds to looking straight up and seeing photons heading,

straight down; the nadir radiance LU of Fig. 3(a) is the value plotted at (lV = 180°. The sun is in

the $, = 0° half-plane.

The curves of Fig. 8 arc explained as follows. Wc begin at z = O (in the water just below

the surface) with our backs to the sun (looking in the @v = 180° direction). Looking straighl

down wc scc the nadir radiance at (0,,$,) = (1 80°, 1800). Looking up toward the horizontal ($V

= 900), the radiance incrcascs slightly owing to total internal reflection of radiance that has been

scattcrcd into nearly horizontal directions. The radiance then dccrcascs quickly as our viewing

angle passes beyond the critical angle for total internal reflection, 0, = 48°. In the region around

(lV = 0° wc arc looking upward and seeing the upwclling radiance that is reflcctcd downward ~y

the ICVC1 water surface. Note for example (using the digital output from Model 11) that

L(T=O,Ov=OO)/L(t=  O,OV=l 80°) = 1.737 x104/8,236x10-s = 0.021, which is just the Frcsncl

reflectance of the surface for perpendicular incidcncc. Recall that in problem 2 the sky is black,
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so there is no sky radiance transmitted through the surface. In problem 4 (not shown),

transmitted sky radiance “fills in” the large dip in the radiance near 6, = OO. As our view passes

the Z,cnith we are now facing the sun. The large spike in the radiance near (0,,$,)  = (40°,00) is

the refracted solar beam, The noticeable Clv-offset in the position of the plotted peak radiance

occurs because different models choose their quad boundaries differently. The “radiance values

arc plotted at the 6, values of the quad centers, which range from 40.3° to 45.0° for the quad

containing the refracted solar beam; plotted points arc connected by straight lines. Passing

beyond the sun, wc see a large horizontal radiance, which decreases as wc look downward.

Model DO shows a more pronounced “spike” in the radiance near the solar direction, and

more pronounced changes near the 48° critial angle, than do the other models. This is because

model DO computes radiances in specific directions, rather than quad-averaged radiances. The

angular quadrature points in model DO arc clustered near the critical angle and near the horizon,

in order to get increased resolution in regions where the radiance varies rapidly with polar angle..3

By depth z = 5, scattering has “smeared out” the solar beam and increased the

downwclling  radiance seen when looking upward near the zenith. The radiance distribution at

z = 20 is very similar in shape to the asymptotic distribution, L@(OV). The asymptotic distribution

as computed by model 11 and normalized to the largest value of L(z=20) is shown as a dotted line

in Fig. 8. Note that only a small amount of Monte Carlo fluctuation is seen even at z = 20, for

this highly scattering case.

Radiance distributions computed by the various models are in equally close agreement for

the tither canonical problems (except for Monte Carlo fluctuations in the sn~all-~O cases) and will

not be discussed.

Conl~utation  of asytnptotic radiances. The asymptotic radiance regime (also called the

diffusion regime) is the region far enough from the boundaries of a homogeneous medium that

the radiance is independent of the incident direction of the source and of boundary effects.

Radiance in the asymptotic rcgirnc is independent of the azimuthal angle $, and it decreases
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exponentially as exp(-km~). Here ka = K~c, where Km is the dimensional (in m-l) asymptotic

diffuse attenuation coefficient and c is the beam attenuation coefficient. The shape L@((l) of the

asymptotic radiance distribution is determined only by the inherent optical properties of the

water; it is independent of depth.

Model 11 computes LM(0) and the associated value of the nondimensional asymptotic

diffuse attenuation coefficient km by the solution of a matrix cigcnvaluc equationG.  The smallest

eigcnvaluc of the matrix is km, and the associated cigenvector  gives Lm. Model DO obtains the

asymptotic solution in a similar fashion. Models MC2 and MC3 obtain 1.. and k. by solution

of the equivalent integral equation49’53

2X 1

JJ(1 + kmp) Lm(p) = COO Lq(p’) ~(~) dp’ d$’ . (12)

o -1

The exact anal ytical solution to Eq. (12) for the case of scattering according to a Raylcigh phase

.~function,  as well as for a Raylcigh phase matrix, was found by Kattawar and

solutions for phase functions that arc highly peaked in the forward direction

Kattawar and PlassSO and in Prieur and Morelw.

Plass50. Numerical

have been given in

Figure 9 shows the computed Lm(Ov), normalized to one at 0, = 0°, for prob]cms 1 and

2, The numerical results are in excellent agrccmcnt for problem 2 and for the 00 = 0.9 case of

problcm 1, which also agrees with its exact analytic solution. However, the numerical results

differ considerably for the COO = 0.2 case of problem 1, and each is considerably off from the

analytic solution. The reason for this inaccuracy in the computed L- is as follows. For problem

1, 00 = 0.2, the analytic km value is k ~ = 0.99937. However, Eq. (12) becomes singular as Ov

~ O (p ~ –1 ) when km = 1. For the nearly singular case at hand, both model II’s eigcnrnatrix.
routine and the integral equation routines arc having a difficult time determining accurate values

for km and L@. This is most noticeable in the km = 1.0006 value determined by model II; the

theoretical upper limit for km is exactly one. Even slight errors in km cause large diffcrcnccs in

L- when km is near one. Author G.W,K, was able to obtain a satisfactory numerical solution of
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Eq. (12)for this case only after rcsofiing toquadruplc-prccision  arithn~ctic. Thckm=O.87valuc

seen in problem 2, (1)0 =0.2,  is farcnough fron~onc that nonun~crical  difficulticsariw. Note

that the computation of kw and Lm is a separate problcm from the computation of the radiances

and irradiances as discussed above. The inaccuracies in km and L- just discussed in no way

imply inaccuracies in the solution of Eq. (1).

V. Conclusions

Problems 1-3 of Sec. III cover the extreme range of oceanic inherent optical properties:

WO from 0.2 to 0.9, phase functions for pure Raylcigh and pure particulate scattering, and strong

vertical stratification. In computations of Ed and EOU, the numerical models of Sec. 11 usually

gave results within a few pcrccnt of each other throughout the euphotic  zone. The spread in Lu

values was as large as 12% in highly scattering waters, and much larger in highly absorbing

,waters at the bottom of the euphotic Z,onc.

The statistical fluctuations of the Monte Carlo results from the true values of the predicted

quantities are normally distributed. We therefore expect that more than 95% of the Monte Carlo

simulations will bc within two standard deviations (2cJ) of the correct value. The data of Tab.

V give us a feeling for the size of this 2cr-spread of values. Table VIII shows the 26-spread

(cxprcsscd  as a percentage of the mean) for Ed, EOU and Lu in near-surface waters (based on z =

1 for problems 1 and 2, and on z = 5 m for problem 3). Column 2 of the table shows typical

errors in these radiometric quantities when measured by commercial instruments now in wide use.

The third column of the table shows the accuracy desired in rncasurerncnts to bc used for ground-

truth validation of the ScaWiFS ocean color satellitcs5 (to bc launched in 1994). Obtaining such
.

accuracies in Ed and LU measurements requires very careful instrument calibration,

We scc in Tab. VIII that the present numerical models easily compute Ed

accuracy than can be obtained with current instruments. Numerical estimates of Eo,

with greater

, have about

the same accuracy as measured values, The computed values of LU arc less accurate than can be
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measured, or than arc needed for remote sensing studies requiring absolute radiomctric values

of L“. Thus the Monte Carlo models should trace more photon histories, if very accurate L“

values are required. The standard deviation of the Monte Carlo fluctuations is proportional to

n‘%, where n is the number of photons traced. Therefore the 20-spread seen in Tab. VIII can be

cut in half by tracing four times as many photons, which is computationally practicable. Another

possibility is to usc the backward Monte Carlo method, as dcscribcd in Gordonsb.

Monte Carlo calculations using statistical estimation techniques can also yield continuum

radiances, rather than quad-averaged values. Thus if one is intcrcs[cd in results for a few

detectors located at precise angles, this technique can give highly accurate radiance values with

only a very few photons being traccd57”s9.

Values predicted by the Monte Carlo models generally fall on both sides of the values

predicted by models 11 and DO, which do not have statistical fluctuations. Thus models 11 and

,{DO have an advantage in the computation of upwelling quantities or in computations at great

depths, which require tracing very large numbers of photons in the Monte Carlo codes.

The systematic differences in the atmospheric models used to

a 2cr-spread of order 20% in the computed radiometric quantities.

simulate problem 4 Icad to

Thus in order to compute

acceptably accurate absolute  radiomctric values, more careful attention must be paid to how the

incident radiance on the water surface is obtained. However, as noted before, systematic offsets

in the absolute radiometric  variables do not affect the values of apparent optical properties

obtained from the radiomctric variables. The present simple atmospheric models therefore all

appear to bc satisfactory for the computation of apparent optical properties,

Based on the problcm solutions prcscntcd above, and on such comparisons between

models and oceanographic mcasurcmcnts as have been ma-de (not discussed here), we conclude

that each of the numerical models discussed here incorporates correct mathematical

rcprcscntations of the rckwant radiative processes (absorption, elastic and inelastic scattering) and

of the effects of the air-water boundary, Moreover, the models provide accurate numerical
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solutions of the associated equations. Each of these models is adequate for most of the needs

of optical oceanography and limnology.

Appendix. Inelastic source function for model MC1.

As noted in Sec. II, model MC1 incorporates Raman scattering (and other inelastic

processes, such as fluorescence) in an azimutha]ly averaged form suitable for the computation

of inelastic scattering effects on irradianccs.  The corresponding mathematical form of the source

function, which is used in the $-averaged version of Eq. (1), is developed as follows. This

formulation is based on Chandrasckhar’s@ “ ‘hn approximation” solution of the radiative transfer

equation,

The source function for inelastic processes is given by

J

with

and

sin(z,e,h) = -& JW(ZA.X+I)  Pl(cose) qz,iex)  fnbex ,

E,(z,&) = 2n ~Pl(cosO’) L ‘O)(Z,O’ ,l,X) sinfl’ de’ ,
0

(Al)

In these equations, P, is the Lcgcndre polynomial of order 1, N = O for isotropically emitted

fluorescence, and N = 2 for Raman scattering. The total inelastic scattering coefficient .bifl) is

~i~)(Z,Lex+k) = bin(Z,?bex+A)  = ~, ~ln(Z;O’,$’+O,@ ;kex+h)  dQ’~
X

J= 2X ~in(z,~,l,X+k) sin~ Ay.
o

E, for 1 = O is just the scalar irradiancc at kCX, while E, for 1 = 1 is the net irradiancc Ed - Eu at

A~,, The

excitation

inelastic component of the irradiancc at L depends only on the irradiances at the

wavelength(s) and on the bi$) coefficients for the particular process.
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For Raman scattering, ~,~ s ~~,n,, and the angular distribution of ~K,m, is given by

b~an,(m.lf,~ex+  =  DR.”,(YO qa,,,(aex+u $
(A.2)

where ~ ~,n,(~) is given by Eq. (9). Substituting Eq.(9) into Eq. (A.2) and rewriting in terms of

the Lcgcndrc polynomials and the quantity y = (1 – p)/(1 + 3p) gives

( 1[31+3p1+
P ‘— 1+ + 

;YP2(W) ~~an,Ram (Z,LCX+Z)  .
16zl+2p . .

(A.3)

Comparing Eqs. (A. 1 ) and (A.3) reveals that

b:n, = [11 1 - p t)Ran(z,&?J ,
31+2p

and that all of the other bR8n$) arc zero. Finally, the $-averaged source function for Raman

scattering is given by
.$

S,an,(z,e,k)  = &f
[ KM%p2(c0se)lAexbR,n,(z,LeX4) EO(z,keX) ] +

In general, at the emission wavelength k, the source function resulting from a narrow band

of excitation wavelengths Ak~X is

N bi~)(z,k,,+k)  E1(z,k,X)
Sin(z,e,k) = ~b,n(z$k.~~k) ‘k~.  ‘.(z,k~.)  ~ P,(coSe) . (A.4)

I.O bin(z>~ex+~) Eo(z,~ex)

To simulate the irradiances at 1, the basic Monte Carlo code for elastic scattering only is run at

k., to determine E,(z,k,,).  Then Eq. (A,4) is used to inject inelastically scattered pholons into the

medium with the proper distribution in z and 0, Onc way to do this is to choose z from the

probability density p(z) given by -
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Eo(z,xex)
p(z) = ~ .

IEo(z,2bex) dz
o

Thus, given a random number Pj from the scqucncc . ..~j. Pj+l, pj+2,...> z k found from

Pj

z

Jp(z’)dz’ .
0

Given Z, then (1 is chosen from the conditional density P(O Iz) given by

N t)i:o(z,X --A) El(z,% )
P(o Iz) = + ~ b (z,~ ‘X+)J E (z ~ex) P,(coSe) ,

in ex o 9 ex

so that

0

Jpj+~ = ])(e’ IZ) dO’
o

Finally, the rest of the source function must bc incorporated into a photon weight

W = bin(z,heX+k) ALeX [EO(z,&X) dz ,
il

so that Sin(z,e,~) = Wp(z)p((l Iz) as required. Once a photon is emitted at L, it is followed in a

manner similar to that which would bc used in the absence of inelastic scattering, with the

cxccption that inelastic scattering from k to longer wavelengths is included by increasing the

absorption coefficient u(z,k) by the appropriate inelastic scattering ceofficicnt bin(z,l~k’)  with

~ < ~ (recall, however, the discussion of this point in the definition of problem 7). In the code,

EO(Z,LCX) is normalized to unit irradiance at kex entering the top of the atmosphere normal to the

solar beam, so the computed irradiances at L (as seen in Tab. V]) are for unit irradiancc at k~X

entering the top of the atmosphere. This simulation tcchniquc was in part developed in this

manner so that it could bc used with experimental measurements of E, to predict the inelastically

scattcrcd irradianccs for a given process, e.g. Raman scattering. Such measurements can bc

obtained using instrumentation developed by VOSSC*G2.
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Table 1. Significant symbols, units and dcfiniticms.

Symbol Units Definition

L nm the

v dcg the

0 dcg the

$ dcg the

wavelength of light

scattering angle; O < ~ < 180°

polar angle of photon travel, measured from the nadir,

()<0<]8()0

azimuthal angle of photon travel, measured

P

0,
.I

4,
!2

7,

0

aW

aP

a

bw

bp

b

c

—

deg

dcg

sr

—

—

counterclockwise (looking downward) from the downwind

direction, O < @ c 360°

p = COS(3; alternate way to specify the polar angle, -1 < p <1

the polar viewing angle: t3v = 180° – 6

the azimuthal viewing angle: $V = 180° + Q

solid angle; a differential element is dQ = sinO dfl d$ = dp do

the set of all downward directions;
1

dfi? = 2n sr

J

=4
the set of all upward directions; dQ = 2X sr~J
gcomct.ric  depth, measured positive downward

optical depth, measured positive downward: z = fzc(z)dz

the

the

the

th6

the

the

the

the

.m
standard deviation of the surface wave slope

absorption coefficient for pure sca water

absorption coefficient for suspended particles

total absorption cocfficicnt: a = aW + aP

scattering coefficient for pure sca water

scattcri ng coefficient for suspended par[iclcs

total scat(cring cocfficicn[:  b s bW + bP

total attenuation cocfficicnt: c E a -t b



O.)O

L

Lu

L.

km

s

El

E,

Eu

EOU

nl-l sr-l

sr-l

—

W m-2 sr-l rim-’

W m-2 sr-l rim-l

W m-2 sr-l rim-l

W m“2 sr-] nm”l

W m-2 nm”l

W m-2 rim-l

W nl-2 rim-l

W m-2 rim-l

the volume scattering function

the scattering phase function, ~ = ~/b

the scattering-to-attenuation ratio, (i)O s b/c

the radiance distribution, L = L(z,O,Q)  or L(LI.@)

the nadir radiance, Lu = Lu(~) e L(z,0=180,@=O)

the asymptotic radiance distribution

the asymptotic diffuse attenuation coefficient

an internal source of radiance

irradiancc on a surface perpendicular to the sun’s rays

downwclling  plane irradiancc: Ed(~) =
1

L(T,p,$) Ip I dQ

1

=d
upwelling plane irradiancc: EU(Z) = L(T,p,Q) Ip I dfl=.
the upwelling scalar irradiancc: EOU(T) E 1 L(z,p,$) dfl=.



Table Il. Pha.sc function values used in defining the particulate phase function ~P(v). The

notation nfc mcani nxl (F’.

Scattering Phase Scattering Phase

angle function angle function

(dcg) (sr-’) (dcg) (sr-’)

0,10000

0.12589

0.15849

0.19953
.$

0.25119

0.31623

0.39811

0.50119

0.63096

0.79433

1.0000

1,2589

1.5849

1.9953

2.5119

3,1623

1.76661+3

1,29564+3

9.50172+2

6.99092+2

5.13687+2

3.76373+2

2.76318+2

2.18839+2

1.44369+2

1.02241+2

7.16082+1

4,95803+1

3.3b511+1

2.28129+1

1.51622+1

1.00154+1

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

105.0

110.0

115.0

120.0

125.0

2.27533-2

1.69904-2

1.31254-2

1.04625-2

8.48826-3

6.97601-3

5.84232-3

4.95306-3

4.29232-3

3.78161-3

3.40405-3

3.11591-3

2.91222-3

2.79696-3

2.68568-3

2.57142-3



3.9811

5.0119

6.3096

7,9433

10.0

15.0

20,0

25.0

30.0

35.0

40;0
.1

45.0

6.57957

4.29530

2,80690

1.81927

1.15257

4.89344-1

2.44424-1

1,47151-1

8.60848-2

5.93075-2

4.20985-2

3.06722-2

130.0

135.0

140.0

145.0

150.0

155.0

160.0

165.0

170.0

175.0

180.0

2.47603-3

2.37667-3

2.32898-3

2.31308-3

2.36475-3

2.50584-3

2.66183-3

2.83472-3

3.03046-3

3.09206-3

3.15366-3

.



T~ble 111. Summary of the canonical probIems.
* ,-

Problem

1 2 3 4 5 6 7
easy base stratified atmospheric wind-blown bottom Raman

Parameter problem probIem water effects surface effects scattering

albedo, coO

phase
function

air- water
surface

diffuse sky
radiance

internal
sources

bottom
boundary

0.9, 0.2 0.9, 0.2 depth 0.9
dependent

0.9 0.2 0.29 at 417 nm
0.15 at 486 nm

Rayleigh
Q. (3)

flat

particle
Tab. 11

flat

depth particIe
dependent Tab. II

particle
Tab. II

particIe Eq. (3) and
Tab. II Eq. (9 )

flat flat capillary
waves

flat flat

o 0 0 various
models

o 0 0

0 0 0 0 0 0 various
models

infinitely
deep

infinitely
deep

infinitely infinitely
deep deep

infinitely
deep

Iambertian infinitely
atz= 5 deep



Table.IV. Reprcscntativc  execution timcs,a ndnurnbcrso fsimulatedp hotonsfor

models MC1-MC5.

Execution time Numbcrof photons Numbcrof photon

Problcm (sCc) initiated collisons

Model 11 (Computer: Sun SPARCstation 2, no code optimization):

1,6.). =0.9 349 for T = 10; 730 for z = 20

1,0. =0.2 350 for z = 10; 733 for z = 20

2, co. = 0.9 306 for ~ = 10; 496 for z = 20

2, 00 = 0.2 386 forz= 10; 711 forz=20
.x

3 1180 forz. =60m

Model DO (Computer: Dccstation 5000/240, no code optimization)

1, (0.=0.9 5 for irradianccs only, 2 Iaycrs

1,0.= 0.2 5 for irradiances only, 2 layers

2, 0)0 = 0.9 9 for irradiances only, 2 layers; 435 for radiances, 2 layers

2, 00 = 0.2 9 for irradianccs only, 2 layers

3 171 for irradianccs only, 25 layers

Model MC1 (Cornputcr: Dccstation 5000)
.

1,0. =0.9 7200 1.25x

1,6)0 = 0.2 7200 6.63x

o’

06

2, (i)O = 0.9 7200 9.66x1O’

2, co. = 0.2 7200 7. I7X1O’

3 7200 7.49x 106

4.98x107

3.99X10 7

7.18x107

3.77X10 7

8.74x107



Model MC2 (Computer: Vax 9000)

1, (0.=0.9 5830 1. OX1O’ 9.47X10 7

l,(i)o=o.2 530 1. OX1O’ 7.54X10 7

2, 00 = 0.9 4630 I.0X106
9.72x107

2, 00 = 0.2 410 1.0X106 7.85x107

Model MC3 (Computer: Hewlett Packard 9000/730)

1, (1)0 = 0.9 60000

l,olo=o.2 74000

2, Co. = 0.9 45000

2, (1)0 = 0.2 84000

3 56000
.$

Model MC4 (Computer: Microvax 111)

1, (0.=0.9 15100

1,0.= 0.2 17700

2, 00 = 0.9 9680

2, 0)0 = 0.2 10000

3 24200

10.9X1O’

55.7X106

8.7x1O’

63.7x1O’

8.9x1O’

5.0X 104

1.0X106

8.0x 104

1.2X106

1,0X105

6.72x108

7.07X 108

7.30X 108

12.10X 108

9.02x108

1.66X107

1.44X 107

1.24x10 7

I.02X107

3.06x107

Model MC5 (Computer: Cray Y-MP, no vcctorization)

l,olo=o.9 1981 for ~ = 20 1 .Oxl 07

.
1,0. =0.2 416 fort = 10 I.0X107

2, co. = 0.9 2300 for z = 20 1.0X107

2, CD. = 0.2 389 for~ = 10 I,0X107



Table V. Average values of Ed, EOU and LU at scleclcd depths for problems 1-6. N is the number

of modc]s included in the averages, The ratio of the sample standard deviation to the sample

mean, sfi, is also displayed for each average value. The average values are relative to an

incident solar irradiance of El = 1.0 W m-2 rim-l incident on the water surface, except for

problcm 4, for which El is applied at the top of the atmosphere. The notation 3.66-1 means

3.66x 10-], etc.

optical average value corresponding SE

depth Ed EOU Lu F“d Eou Lu

Problcm 1, COO = 0.9 (N= 7)
.4

1 3.66-1 3.72-1

5 4.33-2 4.35-2

10 3.16-3 3.20-3

Problcm 1, 0)0 = 0.2 (N= 7)

1 1.41-1 1.34-2

5 1.07-3 1.00-4

10 2.93-6 3.00-7

Problcm 2, WO = 0.9 (N = 7)

1“ 4.13-1 9.31-2

5 1.87-1 4,63-2

10 6.85-2 1.65-2

4.85-2

5.59-3

4.37-4

1.72-3

1.37-5

3.39-8 (N=4)

6.99-3

3.26-3

1.21-3

0.002

0.003

0.015

0.001

0.005

0.102

0.001

0.005

0.010

0.005

0.007

0.038

0.003

0.039

0.308

0.021

0.017

0.014

0.015

0.052

0.091

0.044

0.288

0.197

0.063

0.055

0.109



Problem 2, 00= 0.2 (N= 7)

1 1.62-1

5 2.27-3

10 1.30-5

Problcm 3 (N= 6)

5 m 2.30-1

25 m 1.62-3

60 m 5.23-5

Problcm 4 (N= 6)’

1 3.23-1

5 1.49-1
.1

10 5.56-2

Problcm 5 (N= 4)

1 1.14-1

5 4.33-2

10 1.48-2

Problem 6 (N= 3)

1 1.62-1

5 2,28-3

9.66-4

1.37-5

7.28-8

4.34-2

2.86-4

5.13-6

7.13-2

3.57-2

1.31-2

3.55-2

1.22-2

3.65-3

9.81-4

2.28-3

5.47-5

6.24-7 (N=6)

4.02-9 (iV=5)

3.13-3

2.12-5

3.57-7

5.63-3

2.77-3

9.60-4

2.09-3

7.63-4

2.49-4

6.84-5

3.60-4

0.000

0.002

0.047

0.006

0.028

0.071

0.076

0.072

0.070

0.012

0.009

0.007

0.000

0.003

0.023

0.063

0.187

0.025

0.038

0.036

0.091

0.076

0.073

0.020

0.028

0.020

0.010

0.002
.

0.060

0.355

0.248

0.054

0.061

0.434

0.111

0.141

0.107

0.031

0.036

0.025

0.020

0.010

a. sfi values determined by systematic offset; scc discussion in the text,



Table VI. Raman scattering contributions 10 Ed and EU at k = 486 nm from an excitation

wavelength of k., = 417 nrn. Parameter values arc given in the specification of problcm 7.

Values in the body of the table have units of W n~-2 nnl-l for an incident irradiance of El = 1.0

w n~-2 nnl-’ at ?bex.

depth model

(m) MC1 MC2 MC3 MC5

Ed values:

o 0.01875 0.01874 0.01739 0.01873

50 0.02489 0.02488 0,02470 0.02490
.$

100 0.01136 0.01136 0.01123 0.01138

Eu values:

o 0.03532 0.03512 0.03478 0.03523

50 0.01034 0.01042 0.01027 0.01039

100 0.00287 0.00296 0.00292 0.00296



Table VII. Computed values of km.

Model

Problem II DO MCla MC2 MC3

1, (0.=0.9 0.5248 0.5232 0.52 0.5232 0.5235

1, (0.=0.2 1.0006 0.9994 – 0.9996 0.9952

2, 0)0 = 0.9 0.1920 0.2068 0.189 0.1835 0.1879

2, @ = 0.2 0.8737 0.8794 - 0.8590 0.8619

a. Values determined by visual inspection of plotted output,

3



Table VIII. Comparison of accuracies for computing and measuring radiomctric variables.

Variable 2cr-spread current target

of model mcasurcmcnt accuracy

values capability for ScaWiFSa

Ed 1% 3-5 % 2%

FJOu 5% %5 %. .

LU 12 % 3-5 % 3%

a, from Mucllcr and Austin55
.$



FIGURE CAPTIONS

Fig. 1. Panel a shows inherent optical properties as a function of depth for problcm 3.

Cocfficicnts a, b, and c have units of m“]; COO is dimensionless. Panel b shows the

scattering phase function for pure sca water, ~ ~; for particles, BP; and for problcm

3 at depths of z = O, 17 m, and 60 m.

Panel a shows Ed, Eou, and LU as computed by the various modc]s for problem 1,Fig. 2.

.I

Fig. 3

Fig+ 4

Fig. 5

Fig. 6

Fig. 7.

Fig. 8

010 = 0.9. Panel b shows the same quantities as computed for the case of COO = 0.2.

The dotted line rcprcscnts the air-water surface. Results from models II and DO

are plotted with solid lines; models MC1 -MC5 with dashed lines. Depth z = O is

in the water, just below the surface, and “in air” represents a point just above the

surface.

Model predictions for problcm 2, the “base” case. Panel a is for COO = 0.9 and

panel b is for COO = 0.2.

Model predictions for problcm 3, the stratified-water case.

Ed near the surface for problcm 4, the base case plus an atmosphere.

Model predictions near the surface for problcm 5, the capillary-wave case. The

wind speed is U = 7.23 m S-l, and the zenith angle of the sun is QUn = 80°.

Model predictions for problcm 6, the finite-depth case. The bottom reflectance

is 0.5.
.

Radiance distribution in the plane of the sun for problem 2, COO = 0.9. Angles

(e,,$,) arc viewing directions: (3V = 180°- (3 and @v = 180° + $, where (0,$) arc

the directions of photon travel. Solid lines arc L(z,Ov,@v) at selected depths within

the water; the dotted line is the asymptotic distribution Lm(Ov) normalized to the



Fig. 9

largest value of L at z = 20.

Asymptotic radiance distributions L@(Ov) for problems 1 and 2, as computed by

various models (solid lines). The dotted lines give the exact analytic solution4G for

the Rayleigh phase function of problcm 1.



geometr ic  depth z ( m )

--(7

o
0

0
b

* O.

c)
— o

A

.

N

I I I
~ & E o

1 1 1 I ! I 1 I I r 1

0

0

I 1 t ! I 1 1 ! I 1 I ! I



1.000

0.100

0.01

0.00

L

or

1 1 1 , I I I

o 30 60 90 120 150 180
s c a t t e r i n g  a n g l e  ~ (deg)

.



(/l

r-n
K CD

‘1
“3

optical d e p t h  T
—,

A 3
0

0

&’
o

II

o

b

-u

2
CT
6-
3 0“

c
4 I-1

a

/’
i-

/ c
/

/

P 1

-i

0



1

optical depth T

—.
A 3

_o (n N-o.
00 0 0 0 0 :“

I
03

w

a

o
0

\ .

\

\\lm
\ : -0



u)

Ci
7—

0

0
0

0

b
a

o

0
.
J

o
0

w

optical  depth T

I I



l-cl
c (D
-IIs

optical  depth T
—.

J 3
. 0 u-l M’ O *
00 0 ~ ~ ~ ;.

o
I
03

0
I
m

0
I

A

o
I
N

A

o I
o

\ I
\ I I

\
\ .
\
\

N \

<,. , “’\

1-
C

N
\

!\ II
o
c

N--r-l



geometr ic  depth  z  (m)
—.

m N“- 3
0 ’ ~d. u-l+ Oulo

00 0 0 0 boo:.
I
a

o
0

\



0.
A

o

I-1
n

n

0
b
o

opt ica l  depth  T

u-l N’
o 0 0

,.

I I I



(n

Ci
-’l—
c)
Q<”

w

opt

u-l.

cat d e p t h  T
—.
3

u
G
3

c
u-l

--A

o



o p t i c a l  d e p t h  T

1
u) I 1

\
\

— \

:\ -1
;\l

A u

o F I I 1 I I 1
0

.



A
Q—.
-T

:

— .

o

II

a)
o

rad iance  L

o 0 0

(w m-2 Sf-l r im - ’ )

o

0

1 I 1

,’

.“
*

L I I 11 {111 I
1 1 I IL

--A
s-

(7Q

-’l --1-1
II

E.
II II

u-lo. .



Canonical Case 2b: ss albedo=O.9
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